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Abstract—Motivated by the numerous healthcare applications
of molecular communication within Internet of Bio-Nano Things
(IoBNT) paradigm, this work addresses the problem of abnormal-
ity detection in a blood vessel using multiple biological embedded
computing devices called cooperative biological nanomachines
(CNs), and a common receiver called the fusion center (FC). Due
to blood flow inside a vessel, each CN and the FC are assumed to
be mobile. In this work, each CN performs abnormality detection
with certain probabilities of detection and false alarm. The CNs
report their local decisions to a FC over a diffusion-advection
blood flow channel using different types of molecules in the
presence of inter-symbol interference, multi-source interference,
and counting errors. The FC employs the OR and AND logic
based fusion rules to make the final decision after decoding
the local decisions using the sub-optimal detectors based on the
approximation of the log-likelihood ratio. For the aforementioned
system, probabilities of detection and false alarm at the FCare
derived. Finally, simulation results are presented to validate the
derived analytical results, which provide important insights.

Index Terms—Abnormality detection, diffusion, IoBNT, mobil-
ity, molecular communication, nano-networks.

I. I NTRODUCTION

T HE Internet of Bio-Nano Things (IoBNT) paradigm is
gaining significant prominence for addressing challenging

problems in biomedical scenarios [1], where biological cells,
produced through synthetic biological processes, are usedas
biological embedded computing devices or nanomachines to
perform sensing, and actuation etc. Based on the biological
cells and their functionalities in the biochemical domain,
biological nanomachines have led to the development of novel
applications such as intra-body sensing and actuation, intra-
body connectivity control, efficient drug delivery, gene therapy,
artificial blood cell production, and human body monitoring
by an external health-care provider (see [2]–[4] and the refer-
ences therein). However, this paradigm poses several research
challenges in terms of communication and networking using
biochemical infrastructure while enabling an interface tothe
Internet. Development of efficient and safe techniques for
information exchange, interaction, and networking between the
biological nanomachines within the IoBNT, is one of the major
research challenges. In this context, molecular communication
involving transmission and reception of information encoded
in molecules, has attracted significant research attentionin the
field of IoBNT [5]–[12]. Molecular communication which is
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naturally carried out by cells without external influence iside-
ally suited for above applications especially for abnormality or
anomaly detection inside the blood vessels at nano-scale [13].

Recently, some research efforts [14]–[19] have been devoted
to addressing abnormality detection such as tumor, and cancer,
etc. However, none of the works considered the abnormality
detection problem in a diffusion-advection blood flow channel,
where multiple cooperative biological nanomachines (CNs)
and a common receiver or fusion center (FC) also move along
with the information molecules with blood flow. This work,
therefore, addresses the abnormality detection problem ina
blood vessel where each of the mobile CNs are assumed
to perform abnormality detection with certain probabilityof
detection and probability of false alarm and report the local
decisions to a FC using different types of molecules. Simple
OR and AND fusion rules are employed at the FC to infer the
presence or absence of the abnormality after decoding the local
decisions transmitted by each of the CNs over a flow-induced
diffusive channel in the presence of inter-symbol interference
(ISI), multi-source interference (MSI), and counting errors.
In contrast to the Chair-Varshney (CV) rule [20]–[22], the
performance of AND/OR rules at the FC can be characterized
in terms of closed-form expressions for the probabilities of
detection and false alarm. Using the first hitting time model,
the probabilities of detection and false alarm at the FC are
derived employing OR and AND logic based fusion rules,
incorporating the detection performance of the CNs. Here, the
first hitting time model best captures the randomness of the
arrival time of the molecule due to the Brownian motion of
the CNs and FC to make a final decision on abnormality.
It is also worth mentioning that in contrast to the passive
receiver considered in the existing literature, this work models
the receiver nanomachines as fully absorbing receivers [23],
[24] which is more practical for health-care applications inside
the human body.

II. SYSTEM MODEL

This work considers cooperative abnormality detection us-
ing molecular signaling inside a blood vessel, i.e., semi-infinite
one-dimensional flow-induced fluid medium with constant
temperature and viscosity, where the length of propagation
is large compared to width dimensions. Due to blood flow
inside a vessel, all of the CNs and FC are assumed to be
mobile1 with the flow v, i.e., vCN,k = vFC = v, where
vCN,k and vFC denote the velocities of thekth CN and the

1Similar to [25]–[27], the movement of each CN and the FC is modeled as
a one dimensional Gaussian random walk, where each of the nanomachines
(CNs and FC) are released simultaneously inside the blood vessel. It is
assumed that the movement of each CN and the FC does not disrupt the
propagation of the information molecules. Moreover, the CNs and the FC can
pass each other (see [27] for detailed information).



FC, respectively, where1 ≤ k ≤ K. The diffusion coefficient
of the kth mobile CN, located at distanced0,k from the
FC at τ = 0, is denoted byDCN,k, whereas the diffusion
coefficient of the FC is denoted byDFC. One promising
application of this work is chrono drug-delivery [28], where
CNs detect an event indicating the abnormality inside the
blood vessel. For example, each of the CNs can detect the
same or different events indicating abnormality by sensing
the molecules2 released from one or more infected tissues.
This work considers independent observations at each of the
CNs as applicable to various scenarios that include cancer
detection in which different CNs can sense (or measure)
different gene and protein based biomarkers, nucleic/ amino
acids, and a lack of oxygen [17], [29], [30]. Subsequently,
each CN independently communicates its local decision to the
drug delivery nanomachine, i.e., FC, which decodes each CN
decision to collectively decide the presence of abnormality so
as to release the drug inside the blood vessel. The procedure
for cooperative abnormality detection is given below.
• Step 1: Depending on the processing capability, each CN

can employ a different decision rule for abnormality de-
tection in thejth time-slot,j ∈ {1, 2, · · · }. The detection
performance3 of thekth CN is characterized in terms of its
probabilities of detection (PCN

D,k) and false alarm (PCN
F,k).

• Step 2:Next, using different types of molecules4, each CN
transmits its local decision obtained in Step 1 to the FC
in the subsequent(j + 1)th time-slot only if it detects an
abnormality otherwise it remains silent.

• Step 3:The FC first decodes the local decisions transmitted
by each CN over the potentially erroneous diffusive channel
using the sub-optimal detector based on the approximation
of the log-likelihood ratio. Finally, the FC combines the
decoded binary decisions using AND/OR rules to make
a final decision to infer the absence or presence of an
abnormality inside a blood vessel.
Similar to several existing works [32]–[36] and the refer-

ences therein, this work also assumes perfect time synchro-
nization between the CNs and the FC to develop various
important insights into the system performance. The channel is
divided into time-slots of durationτ , where the(j+1)th slot is
defined as the time period[jτ, (j + 1)τ ] with j ∈ {1, 2, · · · }
and the individual time-slot is comprised ofN sub-slots of
duration τ̃ . This work also assumes that the abnormality
exists either in allN sub-slots of total durationNτ̃ or none
and the observations in the successive time-slots are assumed
independent [18], [37]. Hence, each CN senses the channel for
N consecutive sub-slots to take a decision. Upon receiving
the local decision from each CN, the FC makes an overall
decision at the end of each time-slot of durationτ . The
number of molecules received at the FC corresponding to the

2The molecules released from an infected tissue are different from the
information carrying molecules between each of the CNs and FC.

3This work considersPCN
D,k

[j] = PCN
D,k

, PCN
F,k

[j] = PCN
F,k

,∀j since it is
assumed that the characteristics of the channel between thesource and the
kth CN do not change over time. It is also worth noting that similar to hitting
probabilities [31],PCN

D,k
andPCN

F,k
at the FC can be estimated at the beginning

of the communication process using known training sequences.
4The molecular propagation of type-k molecules from thekth CN to the

FC occurs via Brownian motion with drift and diffusion coefficient DP.

transmission of local decisionxk[j] ∈ {0, 1} by the kth CN
in slot [jτ, (j + 1)τ ] can be expressed as

R̃k[j+1] =S̃k[j+1] + Ĩk[j+1] + Ñk[j+1] + C̃k[j+1], (1)

whereS̃k[j + 1] represents the number of molecules received
in the current(j+1)th slot and follows a binomial distribution
with parametersnkxk[j] and q0k, i.e., B(nkxk[j], q

0
k), where

nk is the number of type-k molecules transmitted by the
kth CN for xk[j] = 1 and q0k denotes the probability that
a transmitted molecule reaches the FC within the current slot.
The quantityÑk[j + 1] denotes MSI, i.e., background noise
arising due to molecules received from other sources, which
can be modeled as a Gaussian distributed random variable
with meanµo and varianceσ2

o under the assumption that the
number of interfering sources is sufficiently large [38]. The
approximation still holds for the scenarios when the number
of interfering sources is not sufficiently large but they are
close to the intended receiver and transmit a large number
of interfering molecules [38, Section IV]. Also, note that
the noiseÑk[j + 1] and the number of molecules̃Sk[j + 1]
received from the intended CN are independent [32]. The term
C̃k[j + 1] denotes the error in counting the type-k molecules
at the FC, also termed as the “counting error”. This can
be modeled as a Gaussian distributed random variable with
zero mean and variance that depends on the average number
of molecules received as,σ2

c,k[j + 1] = E{R̃k[j + 1]} =

nkxk[j]q
0
k + µo +

∑j
i=2 nkxk[j − i + 1]qi−1

k [32], [39]. The
quantity Ĩk[j + 1] is the ISI arising in slotj + 1 due to
transmissions in the previous slots and is given as

Ĩk[j + 1] = Ĩk[2] + Ĩk[3] + · · ·+ Ĩk[j], (2)

where Ĩk[i] ∼ B(nkxk[j − i + 1], qi−1
k ), 2 ≤ i ≤ j denotes

the number of stray molecules received corresponding to the
transmission of binary decisionxk[j − i + 1] ∈ {0, 1} in the
(j−i+2)th slot. Moreover, the probabilityqj−i

k that a molecule
transmitted by thekth CN in slot i ∈ {1, 2, · · · , j} arrives
at FC during time-slotj can be obtained as [34, Eq. (1)],
qj−i
k =

∫ (j−i+1)τ

(j−i)τ fk(t; i)dt, whereτ = Nτ̃ and fk(t; i) is
the probability density function (PDF) of the first hitting time,
i.e., the time required for a molecule to reach the FC. The
PDFfk(t; i) for a flow-induced diffusive channel considering
mobile kth CN and FC with flowv, i.e., vCN,k = vFC = v,
DCN,k 6= 0, andDFC 6= 0, is given by5 [27, Eq. (16)]

fk(t; i) =
[iτDtot,kD]1/2

π
√
twk(t; i)

e

(
−d20,k

4iτDtot,k

)
+ e

(
−d20,k

4Duk(t;i)

)

× d0,k√
4πD(uk(t; i))3

erf

(
d0,k

√
tD

2
√
iτDtot,kwk(t; i)

)
, (3)

whereuk(t; i) , t+ iτDtot,k/D andwk(t; i) , iτDtot,k+ tD.
The distanced0,k is the Euclidean distance between the
kth CN and the FC at timeτ = 0, erf(x) denotes the

5The derived PDF is also verified through particle-based simulations in
[27]. It is worth noting that the PDF in (3) is equivalent to the first hitting
time PDF [25, Eq.(6)] for diffusion channels without flow andmobile CNs
and FC. This is due to the fact that the effective flow velocity, i.e., v − vFC,
considering the relative motion between the information molecules and the
FC, is zero as FC is moving with the same flowv i.e., vFC = v.



standard error function and the quantitiesDtot,k and D are
defined as,Dtot,k = DCN,k + DFC and D = DFC + DP

respectively. Further, if the number of molecules releasedby
the kth CN satisfynkq

0
k > 5 and nk(1 − q0k) > 5 [32], the

binomial distribution forS̃k[j + 1] can be approximated by
the Gaussian distribution6 with meanµk[j + 1] = nkxk[j]q

0
k

and varianceσ2
k[j +1] = nkxk[j]q

0
k(1− q0k), i.e., S̃k[j +1] ∼

N (nkxk[j]q
0
k, nkxk[j]q

0
k(1−q0k)) [40]. Similarly, the binomial

distribution ofĨk[i], 2 ≤ i ≤ j can be approximated as̃Ik[i] ∼
N (µI,k[i]=nkxk[j−i+1]qi−1

k , σ2
I,k[i]=nkxk[j−i+1]qi−1

k (1−
qi−1
k )). Further note that̃Sk[j+1] andĨk[i], i = 2, 3, · · · , j are

independent since the molecules transmitted in different time
slots do not interfere with each other [32], [33]. Based on the
system model discussed above, the AND and OR logic based
rules at the FC are defined as,AND rule: there is abnormality
if the decisions obtained from all the CNs report an abnormal
state.OR rule: there is abnormality if at least one decision
obtained at the FC reports an abnormal state.

III. D ETECTION PERFORMANCEANALYSIS AT FC

Let H0 andH1 denote the hypotheses corresponding to the
absence and presence of abnormality inside a blood vessel.
The average probability of detectionQl

D and probability of
false alarmQl

F at the FC corresponding to CN transmissions
in time-slots1 to l are given as

Ql
D =

1

l

l∑

j=1

QD[j + 1], Ql
F =

1

l

l∑

j=1

QF [j + 1], (4)

where QD[j + 1] and QF [j + 1] denote the probabilities
of detection and false alarm at the FC corresponding to the
transmission by each of the CNs in the(j + 1)th time-slot.
The closed-form expressions forQD[j+1] andQF [j+1] are
derived next for AND and OR fusion rules at the FC.

1) AND Rule: The probabilities of detectionQD[j + 1]
and false alarmQF [j + 1] at the FC corresponding to the
transmission by each of the CNs in the(j+1)th time-slot can
be derived as

QD[j + 1] =Pr(H1|H1) =
∏K

k=1
Pr(HFC

1,k|H1), (5)

QF [j + 1] =Pr(H1|H0) =
∏K

k=1
Pr(HFC

1,k|H0), (6)

where Pr(HFC
1,k|H1) and Pr(HFC

1,k|H0) can be derived as

Pr(HFC
1,k|H1)

= Pr(HFC
1,k|HCN

0,k)Pr(HCN
0,k|H1) + Pr(HFC

1,k|HCN
1,k)Pr(HCN

1,k|H1)

= P FC
F,k[j + 1](1− PCN

D,k) + P FC
D,k[j + 1]PCN

D,k, (7)

Pr(HFC
1,k|H0)

= Pr(HFC
1,k|HCN

0,k)Pr(HCN
0,k|H0) + Pr(HFC

1,k|HCN
1,k)Pr(HCN

1,k|H0)

= P FC
F,k[j + 1](1− PCN

F,k) + P FC
D,k[j + 1]PCN

F,k, (8)

whereP FC
D,k[j + 1] and P FC

F,k[j + 1] denote the probabilities
of detection and false alarm at the FC corresponding to the
transmission by thekth CN in the(j + 1)th time-slot.

6This approximation is reasonable whennkq
0

k
> 5 andnk(1 − q0

k
) > 5

[32], [33], [40]. It is also worth mentioning that this Gaussian assumption is
also applicable under mobilekth CN and mobile FC scenario assuming the
number of moleculesnk released by thekth CN to be sufficiently large.

2) OR Rule: The probabilities of detectionQD[j + 1] and
false alarmQF [j + 1] at FC can be derived as

QD[j + 1] =Pr(H1|H1) = 1−
∏K

k=1
Pr(HFC

0,k|H1), (9)

QF [j + 1] =Pr(H1|H0) = 1−
∏K

k=1
Pr(HFC

0,k|H0), (10)

where Pr(HFC
0,k|H1) and Pr(HFC

0,k|H0) are given as

Pr(HFC
0,k|H1) (11)

= Pr(HFC
0,k|HCN

0,k)Pr(HCN
0,k|H1) + Pr(HFC

0,k|HCN
1,k)Pr(HCN

1,k|H1)

= (1− P FC
F,k[j + 1])(1 − PCN

D,k) + (1 − P FC
D,k[j + 1])PCN

D,k,

Pr(HFC
0,k|H0) (12)

= Pr(HFC
0,k|HCN

0,k)Pr(HCN
0,k|H0) + Pr(HFC

0,k|HCN
1,k)Pr(HCN

1,k|H0)

= (1− P FC
F,k[j + 1])(1 − PCN

F,k) + (1− P FC
D,k[j + 1])PCN

F,k.

Now, the closed-form expressions forP FC
F,k[j+1] andP FC

D,k[j+
1] can be obtained by formulating the binary hypothesis testing
problem using (1) as

HFC
0,k:R̃k[j+1]=Ĩk[j+1]+Ñk[j+1]+C̃k[j+1] (13)

HFC
1,k:R̃k[j+1]=S̃k[j+1]+Ĩk[j+1]+Ñk[j+1]+C̃k[j+1].

In (13), the number of molecules̃Rk[j + 1] corresponds
to the null and alternative hypotheses following a Gaussian
distribution as

HFC
0,k : R̃k[j + 1] ∼N (µ̃k,0[j + 1], σ̃2

k,0[j + 1])

HFC
1,k : R̃k[j + 1] ∼N (µ̃k,1[j + 1], σ̃2

k,1[j + 1]),
(14)

where the meañµk,0[j+1] and the variancẽσ2
k,0[j+1] under

the null hypothesisHFC
0,k are calculated as

µ̃k,0[j + 1] =

j∑

i=2

βknkq
i−1
k +µo, (15)

σ̃2
k,0[j + 1] =

j∑

i=2

{
βknkq

i−1
k (1− qi−1

k ) + βk(1− βk)

× (nkq
i−1
k )2

}
+ σ2

o + µ̃k,0[j + 1], (16)

and the probabilityβk is given asβk=Pr(xk[j−i+1]=1|H1)
Pr(H1)+Pr(xk[j−i+1]=1|H0)Pr(H0)=PCN

D,kβ+PCN
F,k(1−β),

where β denotes the probability of occurrence of the
abnormality. Similarly, meañµk,1[j+1], varianceσ̃2

k,1[j+1]

under the alternative hypothesisHFC
1,k are derived as7

µ̃k,1[j + 1] =nkq
0
k + µ̃k,0[j + 1], (17)

σ̃2
k,1[j + 1] =nkq

0
k(2 − q0k) + σ̃2

k,0[j + 1]. (18)

Employing the above results in the likelihood ratio test (LRT),
the test at the FC corresponding to the transmission by thekth
CN can be seen as [26, Theorem 1]

T (R̃k[j + 1]) = R̃k[j + 1]
H

FC
1,k

≷
HFC

0,k

γ′

k[j + 1], (19)

7It is worth noting that deriving the exact optimal LRT detector is
computationally cumbersome [17], as it involves computingthe likelihoods
of all the possible combinations of previously sent symbolsconditioned over
the two hypotheses. Therefore, similar to [33], [41], this work obtains sub-
optimal detectors where the mean and the variance under nulland alternative
hypotheses are given in terms of average number of interfering molecules.
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Fig. 1: Detection performance at the FC employing OR and AND fusion rules with (a) different detection performance at the CNs with slot
durationτ = 0.05 s, (b) different mobility conditions withτ = 0.05 s and the detection performance at the CNs as(P CN

D,1 = 0.9, P CN
F,1 = 0.15),

(P CN
D,2 = 0.81, P CN

F,2 = 0.25), (P CN
D,3 = 0.76, P CN

F,3 = 0.30), and (c) different values ofτ .

where the decision thresholdγ′
k[j + 1] is given as

γ′

k[j + 1] =
√
γk[j + 1]− αk[j + 1]. (20)

In (20), the quantitiesγk[j + 1] andαk[j + 1] are defined as

αk[j + 1] =
µ̃k,1[j + 1]σ̃2

k,0[j + 1]− µ̃k,0[j + 1]σ̃2
k,1[j + 1]

σ̃2
k,1[j + 1]− σ̃2

k,0[j + 1]
,

γk[j+1] =
2σ̃2

k,1[j + 1]σ̃2
k,0[j + 1]

σ̃2
k,1[j + 1]− σ̃2

k,0[j + 1]
ln

[
(1− βk)σ̃k,1[j + 1]

βkσ̃k,0[j + 1]

]

+(αk[j+1])2+
µ̃2
k,1[j + 1]σ̃2

k,0[j + 1]−µ̃2
k,0[j + 1]σ̃2

k,1[j + 1]

σ̃2
k,1[j + 1]−σ̃2

k,0[j + 1]
.

Now, using the above test, the expressions for theP FC
D,k[j+1]

andP FC
F,k[j + 1] can be obtained as

P FC
D,k[j + 1] =Q

(
γ′

k[j + 1]− µ̃k,1[j + 1]

σ̃k,1[j + 1]

)
, (21)

P FC
F,k[j + 1] =Q

(
γ′

k[j + 1]− µ̃k,0[j + 1]

σ̃k,0[j + 1]

)
. (22)

IV. SIMULATION RESULTS AND CONCLUSION

For simulation purposes, the abnormality is considered to
occur with probabilityβ = 0.2 and the various parameters are
set as in [33]: the diffusion coefficientDP = 242.78× 10−12

m2/s, the number of slotsl=10, the number of CNsK=3 with
distancesd0,1 = 20 µm,d0,2 = 15 µm,d0,3 = 10 µm from the
FC at τ = 0, the number of molecules transmittednk = 100
for xk[j] = 1 ∀j, and each CN and FC are assumed to be
mobile with diffusion coefficientsDCN,k = DFC = 2×10−10

m2/s under flow-induced diffusive channel with drift velocity
v = 3×10−3 m/s. Moreover, the detection performance at the
CNs is as shown in Fig. 1 wherePCN

D,k[j] = PCN
D,k, PCN

F,k[j] =

PCN
F,k, ∀j and the MSI at the FC is modeled as a Gaussian

distributed RV with meanµo = 10 and varianceσ2
o = 10.

Fig. 1a demonstrates the detection performance at the
mobile FC considering different detection performances at
the mobile CNs. First, it can be observed from Fig. 1a that
the analytical values derived in (4) match exactly with the
simulation results, thereby validating the derived analytical
results. Further, the detection performance at the FC heavily
depends on the detection performance of the CNs. The detec-
tion performance at the mobile FC significantly improves with
the improvement in the detection performance of mobile CNs.

One can also observe that at low values of the probability
of false alarm(Ql

F ), the AND fusion rule outperforms the
OR rule. However, as the value ofQl

F increases, significant
increase in performance gain of the OR rule can be observed
over the AND rule. For lowQl

F , it is intuitive that the
probability of detection(Ql

D) for the AND rule will be better
than the OR rule because the AND rule decidesH1 only when
all the mobile CNs sayH1. However, for higher values ofQl

F ,
i.e., each mobile CN is likely to be in error, the increase in
theQl

D for the AND rule will be more than the OR rule.

Fig. 1b shows the impact of mobility on the detection
performance at the FC employing both OR and AND fusion
rules, whereDCN,k, DFC are zero for fixed CNs and FC as
considered in [1, Fig. 2d]. It can be seen that in comparison
to the fixed or static case, the detection performances at the
FC under OR and AND rules significantly degrade for the
scenario when each CNs and FC are mobile in a flow-induced
diffusive medium withv = 3 × 10−3 m/s. This is due to
the fact that the probability of a molecule reaching the FC
within the current slot, i.e.,q0k progressively decreases while
the ISI from previous slots increases asDCN,k, DFC increase
due to mobility. It is also important to note that the crossover
point, after which the OR fusion rule performs better than
the AND rule, decreases from(Ql

D = 0.79, Ql
F = 0.3) to

(Ql
D = 0.64, Ql

F = 0.27) with the increase inDCN,k andDFC.

Fig. 1c illustrates the detection performance at the FC for
different values of slot duration(τ), where each CN and
FC are mobile with diffusion coefficient2 × 10−10 m2/s. It
is shown that the detection performance at the mobile FC
considering OR and AND fusion rules improves asτ increases
from 0.05 s to 0.2 ms. However, the detection performance at
the mobile FC saturates for further increase inτ . This is due
to the fact that the performance at the mobile FC is dominated
by the detection performance of the mobile CNs. Additional
simulation results can be seen in [42].

Conclusion: This work analyzed the performance of coop-
erative abnormality detection with multiple CNs and a FC
employing OR/ AND fusion rules, where each CN reports its
local decision to the FC over a flow-induced diffusive channel
with ISI, MSI and counting errors. Future studies can focus
on dependent observations at the CNs as well as on modeling
of the CN to FC link in 3-dimensional (3-D) scenarios.
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